55 research outputs found

    Transparent Persistence with Java Data Objects

    Full text link
    Flexible and performant Persistency Service is a necessary component of any HEP Software Framework. The building of a modular, non-intrusive and performant persistency component have been shown to be very difficult task. In the past, it was very often necessary to sacrifice modularity to achieve acceptable performance. This resulted in the strong dependency of the overall Frameworks on their Persistency subsystems. Recent development in software technology has made possible to build a Persistency Service which can be transparently used from other Frameworks. Such Service doesn't force a strong architectural constraints on the overall Framework Architecture, while satisfying high performance requirements. Java Data Object standard (JDO) has been already implemented for almost all major databases. It provides truly transparent persistency for any Java object (both internal and external). Objects in other languages can be handled via transparent proxies. Being only a thin layer on top of a used database, JDO doesn't introduce any significant performance degradation. Also Aspect-Oriented Programming (AOP) makes possible to treat persistency as an orthogonal Aspect of the Application Framework, without polluting it with persistence-specific concepts. All these techniques have been developed primarily (or only) for the Java environment. It is, however, possible to interface them transparently to Frameworks built in other languages, like for example C++. Fully functional prototypes of flexible and non-intrusive persistency modules have been build for several other packages, as for example FreeHEP AIDA and LCG Pool AttributeSet (package Indicium).Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003. PSN TUKT00

    GraXML - Modular Geometric Modeler

    Full text link
    Many entities managed by HEP Software Frameworks represent spatial (3-dimensional) real objects. Effective definition, manipulation and visualization of such objects is an indispensable functionality. GraXML is a modular Geometric Modeling toolkit capable of processing geometric data of various kinds (detector geometry, event geometry) from different sources and delivering them in ways suitable for further use. Geometric data are first modeled in one of the Generic Models. Those Models are then used to populate powerful Geometric Model based on the Java3D technology. While Java3D has been originally created just to provide visualization of 3D objects, its light weight and high functionality allow an effective reuse as a general geometric component. This is possible also thanks to a large overlap between graphical and general geometric functionality and modular design of Java3D itself. Its graphical functionalities also allow a natural visualization of all manipulated elements. All these techniques have been developed primarily (or only) for the Java environment. It is, however, possible to interface them transparently to Frameworks built in other languages, like for example C++. The GraXML toolkit has been tested with data from several sources, as for example ATLAS and ALICE detector description and ATLAS event data. Prototypes for other sources, like Geometry Description Markup Language (GDML) exist too and interface to any other source is easy to add.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003. PSN THJT00

    The ATLAS EventIndex: a BigData catalogue for all ATLAS experiment events

    Full text link
    The ATLAS EventIndex system comprises the catalogue of all events collected, processed or generated by the ATLAS experiment at the CERN LHC accelerator, and all associated software tools to collect, store and query this information. ATLAS records several billion particle interactions every year of operation, processes them for analysis and generates even larger simulated data samples; a global catalogue is needed to keep track of the location of each event record and be able to search and retrieve specific events for in-depth investigations. Each EventIndex record includes summary information on the event itself and the pointers to the files containing the full event. Most components of the EventIndex system are implemented using BigData open-source tools. This paper describes the architectural choices and their evolution in time, as well as the past, current and foreseen future implementations of all EventIndex components.Comment: 21 page

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    corecore